Local Palais-Smale Sequences for the Willmore Functional

نویسندگان

  • Yann Bernard
  • Tristan Rivière
چکیده

Using the reformulation in divergence form of the EulerLagrange equation for the Willmore functional as it was developed in the second author’s paper [Riv2], we study the limit of a local Palais-Smale sequence of weak Willmore immersions with locally square-integrable second fundamental form. We show that the limit immersion is smooth and that it satisfies the conformal Willmore equation: it is a critical point of the Willmore functional restricted to infinitesimal conformal variations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-layer Local Minimum Solutions of the Bistable Equation in Noncylindrical Domains

We construct local minimum solutions for the semilinear bistable equation by minimizing the corresponding functional near some approximate solutions, under the hypothesis that certain global minimum solutions are isolated. The key is a certain characterization of Palais-Smale sequences and a proof that the functional takes higher values away from the approximate solutions.

متن کامل

ON QUASILINEAR ELLIPTIC SYSTEMS INVOLVING MULTIPLE CRITICAL EXPONENTS

In this paper, we consider the existence of a non-trivial weaksolution to a quasilinear elliptic system involving critical Hardyexponents. The main issue of the paper is to understand thebehavior of these Palais-Smale sequences. Indeed, the principaldifficulty here is that there is an asymptotic competition betweenthe energy functional carried by the critical nonlinearities. Thenby the variatio...

متن کامل

Multi-layer Local Minimum Solutions of the Bistable Equation in an Infinite Tube

We construct local minimum solutions of the semilinear bistable equation by minimizing the corresponding functional near some approximate solutions, assuming that some global minimum solutions are isolated. The key step is to prove with the help of a characterization of Palais-Smale sequences that the functional takes higher values away from the approximate solutions than it does near the appro...

متن کامل

Boundedness of Palais-Smale sequences associated to a fourth-order equation in conformal geometry

Under generic assumptions, we prove boundedness of Palais-Smale sequences relative to some geometric functional defined on H(M), where M is a four-dimensional manifold. Our analysis is useful to find critical points (via minimax arguments) of this functional, which give rise to conformal metrics of constant Q-curvature. The proof is based on a refined bubbling analysis, for which the main estim...

متن کامل

On superlinear problems without Ambrosetti and Rabinowitz condition

Existence and multiplicity results are obtained for superlinear p-Laplacian equations without the Ambrosetti and Rabinowitz condition. To overcome the difficulty that the Palais-Smale sequences of the EulerLagrange functional may be unbounded, we consider the Cerami sequences. Our results extend the recent results of Miyagaki and Souto [ J. Differential Equations 245 (2008), 3628–3638].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009